Serveur d'exploration Santé et pratique musicale

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Bilateral engagement of the occipito-temporal cortex in response to dance kinematics in experts.

Identifieur interne : 000610 ( Main/Exploration ); précédent : 000609; suivant : 000611

Bilateral engagement of the occipito-temporal cortex in response to dance kinematics in experts.

Auteurs : Andrea Orlandi [Italie] ; Alice Mado Proverbio [Italie]

Source :

RBID : pubmed:30700799

Descripteurs français

English descriptors

Abstract

Previous evidence has shown neuroplastic changes in brain anatomy and connectivity associated with the acquisition of professional visuomotor skills. Reduced hemispherical asymmetry was found in the sensorimotor and visual areas in expert musicians and athletes compared with non-experts. Moreover, increased expertise with faces, body, and objects resulted in an enhanced engagement of the occipito-temporal cortex (OTC) during stimulus observation. The present study aimed at investigating whether intense and extended practice with dance would result in an enhanced symmetric response of OTC at an early stage of action processing. Expert ballet dancers and non-dancer controls were presented with videos depicting ballet steps during EEG recording. The observation of the moving dancer elicited a posterior N2 component, being larger over the left hemisphere in dancers than controls. The source reconstruction (swLORETA) of the negativity showed the engagement of the bilateral inferior and middle temporal regions in experts, while right-lateralized activity was found in controls. The dancers also showed an early P2 and enhanced P300 responses, indicating faster stimulus processing and subsequent recognition. This evidence seemed to suggest expertise-related increased sensitivity of the OTC in encoding body kinematics. Thus, we speculated that long-term whole-body practice would result in enriched and refined action processing.

DOI: 10.1038/s41598-018-37876-x
PubMed: 30700799
PubMed Central: PMC6353946


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Bilateral engagement of the occipito-temporal cortex in response to dance kinematics in experts.</title>
<author>
<name sortKey="Orlandi, Andrea" sort="Orlandi, Andrea" uniqKey="Orlandi A" first="Andrea" last="Orlandi">Andrea Orlandi</name>
<affiliation wicri:level="3">
<nlm:affiliation>Neuro-MI, Milan Center for Neuroscience, Department of Psychology, University of Milano - Bicocca, Milan, Italy. a.orlandi5@campus.unimib.it.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Neuro-MI, Milan Center for Neuroscience, Department of Psychology, University of Milano - Bicocca, Milan</wicri:regionArea>
<placeName>
<settlement type="city">Milan</settlement>
<region nuts="2">Lombardie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Proverbio, Alice Mado" sort="Proverbio, Alice Mado" uniqKey="Proverbio A" first="Alice Mado" last="Proverbio">Alice Mado Proverbio</name>
<affiliation wicri:level="3">
<nlm:affiliation>Neuro-MI, Milan Center for Neuroscience, Department of Psychology, University of Milano - Bicocca, Milan, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Neuro-MI, Milan Center for Neuroscience, Department of Psychology, University of Milano - Bicocca, Milan</wicri:regionArea>
<placeName>
<settlement type="city">Milan</settlement>
<region nuts="2">Lombardie</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:30700799</idno>
<idno type="pmid">30700799</idno>
<idno type="doi">10.1038/s41598-018-37876-x</idno>
<idno type="pmc">PMC6353946</idno>
<idno type="wicri:Area/Main/Corpus">000600</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000600</idno>
<idno type="wicri:Area/Main/Curation">000600</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000600</idno>
<idno type="wicri:Area/Main/Exploration">000600</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Bilateral engagement of the occipito-temporal cortex in response to dance kinematics in experts.</title>
<author>
<name sortKey="Orlandi, Andrea" sort="Orlandi, Andrea" uniqKey="Orlandi A" first="Andrea" last="Orlandi">Andrea Orlandi</name>
<affiliation wicri:level="3">
<nlm:affiliation>Neuro-MI, Milan Center for Neuroscience, Department of Psychology, University of Milano - Bicocca, Milan, Italy. a.orlandi5@campus.unimib.it.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Neuro-MI, Milan Center for Neuroscience, Department of Psychology, University of Milano - Bicocca, Milan</wicri:regionArea>
<placeName>
<settlement type="city">Milan</settlement>
<region nuts="2">Lombardie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Proverbio, Alice Mado" sort="Proverbio, Alice Mado" uniqKey="Proverbio A" first="Alice Mado" last="Proverbio">Alice Mado Proverbio</name>
<affiliation wicri:level="3">
<nlm:affiliation>Neuro-MI, Milan Center for Neuroscience, Department of Psychology, University of Milano - Bicocca, Milan, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Neuro-MI, Milan Center for Neuroscience, Department of Psychology, University of Milano - Bicocca, Milan</wicri:regionArea>
<placeName>
<settlement type="city">Milan</settlement>
<region nuts="2">Lombardie</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Scientific reports</title>
<idno type="eISSN">2045-2322</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adult (MeSH)</term>
<term>Biomechanical Phenomena (MeSH)</term>
<term>Dancing (MeSH)</term>
<term>Evoked Potentials (MeSH)</term>
<term>Female (MeSH)</term>
<term>Humans (MeSH)</term>
<term>Male (MeSH)</term>
<term>Occipital Lobe (physiology)</term>
<term>Reaction Time (MeSH)</term>
<term>Temporal Lobe (physiology)</term>
<term>Young Adult (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Adulte (MeSH)</term>
<term>Danse (MeSH)</term>
<term>Femelle (MeSH)</term>
<term>Humains (MeSH)</term>
<term>Jeune adulte (MeSH)</term>
<term>Lobe occipital (physiologie)</term>
<term>Lobe temporal (physiologie)</term>
<term>Mâle (MeSH)</term>
<term>Phénomènes biomécaniques (MeSH)</term>
<term>Potentiels évoqués (MeSH)</term>
<term>Temps de réaction (MeSH)</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Lobe occipital</term>
<term>Lobe temporal</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Occipital Lobe</term>
<term>Temporal Lobe</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Adult</term>
<term>Biomechanical Phenomena</term>
<term>Dancing</term>
<term>Evoked Potentials</term>
<term>Female</term>
<term>Humans</term>
<term>Male</term>
<term>Reaction Time</term>
<term>Young Adult</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Adulte</term>
<term>Danse</term>
<term>Femelle</term>
<term>Humains</term>
<term>Jeune adulte</term>
<term>Mâle</term>
<term>Phénomènes biomécaniques</term>
<term>Potentiels évoqués</term>
<term>Temps de réaction</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Previous evidence has shown neuroplastic changes in brain anatomy and connectivity associated with the acquisition of professional visuomotor skills. Reduced hemispherical asymmetry was found in the sensorimotor and visual areas in expert musicians and athletes compared with non-experts. Moreover, increased expertise with faces, body, and objects resulted in an enhanced engagement of the occipito-temporal cortex (OTC) during stimulus observation. The present study aimed at investigating whether intense and extended practice with dance would result in an enhanced symmetric response of OTC at an early stage of action processing. Expert ballet dancers and non-dancer controls were presented with videos depicting ballet steps during EEG recording. The observation of the moving dancer elicited a posterior N2 component, being larger over the left hemisphere in dancers than controls. The source reconstruction (swLORETA) of the negativity showed the engagement of the bilateral inferior and middle temporal regions in experts, while right-lateralized activity was found in controls. The dancers also showed an early P2 and enhanced P300 responses, indicating faster stimulus processing and subsequent recognition. This evidence seemed to suggest expertise-related increased sensitivity of the OTC in encoding body kinematics. Thus, we speculated that long-term whole-body practice would result in enriched and refined action processing.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">30700799</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>08</Month>
<Day>10</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>08</Month>
<Day>10</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">2045-2322</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>9</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2019</Year>
<Month>01</Month>
<Day>30</Day>
</PubDate>
</JournalIssue>
<Title>Scientific reports</Title>
<ISOAbbreviation>Sci Rep</ISOAbbreviation>
</Journal>
<ArticleTitle>Bilateral engagement of the occipito-temporal cortex in response to dance kinematics in experts.</ArticleTitle>
<Pagination>
<MedlinePgn>1000</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1038/s41598-018-37876-x</ELocationID>
<Abstract>
<AbstractText>Previous evidence has shown neuroplastic changes in brain anatomy and connectivity associated with the acquisition of professional visuomotor skills. Reduced hemispherical asymmetry was found in the sensorimotor and visual areas in expert musicians and athletes compared with non-experts. Moreover, increased expertise with faces, body, and objects resulted in an enhanced engagement of the occipito-temporal cortex (OTC) during stimulus observation. The present study aimed at investigating whether intense and extended practice with dance would result in an enhanced symmetric response of OTC at an early stage of action processing. Expert ballet dancers and non-dancer controls were presented with videos depicting ballet steps during EEG recording. The observation of the moving dancer elicited a posterior N2 component, being larger over the left hemisphere in dancers than controls. The source reconstruction (swLORETA) of the negativity showed the engagement of the bilateral inferior and middle temporal regions in experts, while right-lateralized activity was found in controls. The dancers also showed an early P2 and enhanced P300 responses, indicating faster stimulus processing and subsequent recognition. This evidence seemed to suggest expertise-related increased sensitivity of the OTC in encoding body kinematics. Thus, we speculated that long-term whole-body practice would result in enriched and refined action processing.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Orlandi</LastName>
<ForeName>Andrea</ForeName>
<Initials>A</Initials>
<Identifier Source="ORCID">0000-0002-8683-2486</Identifier>
<AffiliationInfo>
<Affiliation>Neuro-MI, Milan Center for Neuroscience, Department of Psychology, University of Milano - Bicocca, Milan, Italy. a.orlandi5@campus.unimib.it.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Proverbio</LastName>
<ForeName>Alice Mado</ForeName>
<Initials>AM</Initials>
<AffiliationInfo>
<Affiliation>Neuro-MI, Milan Center for Neuroscience, Department of Psychology, University of Milano - Bicocca, Milan, Italy.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>01</Month>
<Day>30</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Sci Rep</MedlineTA>
<NlmUniqueID>101563288</NlmUniqueID>
<ISSNLinking>2045-2322</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000328" MajorTopicYN="N">Adult</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001696" MajorTopicYN="N">Biomechanical Phenomena</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003615" MajorTopicYN="Y">Dancing</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005071" MajorTopicYN="N">Evoked Potentials</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009778" MajorTopicYN="N">Occipital Lobe</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011930" MajorTopicYN="N">Reaction Time</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013702" MajorTopicYN="N">Temporal Lobe</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055815" MajorTopicYN="N">Young Adult</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>05</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>12</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>2</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>2</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>8</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30700799</ArticleId>
<ArticleId IdType="doi">10.1038/s41598-018-37876-x</ArticleId>
<ArticleId IdType="pii">10.1038/s41598-018-37876-x</ArticleId>
<ArticleId IdType="pmc">PMC6353946</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Psychophysiology. 2000 Mar;37(2):127-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10731765</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Neurophysiol. 2001 Apr;112(4):713-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11275545</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2001 Sep 28;293(5539):2470-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11577239</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Psychol Sci. 2002 May;13(3):250-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12009046</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurosci Lett. 2003 Jun 19;344(1):41-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12781917</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Neurophysiol. 1992 Oct;9(4):456-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1464675</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Neurosci. 2004 Mar;5(3):184-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14976518</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurophysiol. 2005 Jan;93(1):603-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15295012</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cereb Cortex. 2005 Aug;15(8):1243-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15616133</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain Res Cogn Brain Res. 2005 May;23(2-3):387-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15820645</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2005 Nov 23;25(47):11055-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16306418</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroimage. 2006 Jul 1;31(3):1257-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16530429</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2006 Mar 29;26(13):3532-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16571761</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroimage. 2006 Aug 1;32(1):352-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16632381</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroimage. 2006 Aug 15;32(2):871-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16750639</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cogn Neurosci. 2006 Jun;18(6):932-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16839301</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cogn Neurosci. 2006 Sep;18(9):1453-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16989547</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cogn Neurosci. 2006 Sep;18(9):1488-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16989550</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2006 Oct 10;16(19):1905-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17027486</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mot Behav. 2007 Jan;39(1):3-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17251166</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cereb Cortex. 2007 Dec;17(12):2933-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17372275</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuropsychologia. 2007 May 15;45(9):2059-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17374388</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phys Med Biol. 2007 Apr 7;52(7):1783-800</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17374911</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuropsychologia. 2007 Jun 18;45(11):2621-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17499819</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Neurophysiol. 2007 Oct;118(10):2128-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17573239</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurophysiol. 2007 Sep;98(3):1626-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17596425</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2007 Jul 25;27(30):8023-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17652592</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Psychophysiology. 2008 Jan;45(1):152-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17850238</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurosci Lett. 2007 Oct 22;426(3):181-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17904744</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gait Posture. 2008 Jul;28(1):46-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17976990</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cereb Cortex. 2008 Oct;18(10):2382-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18296436</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroreport. 2008 Mar 26;19(5):583-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18388743</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain Res. 2008 May 19;1210:204-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18417106</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cereb Cortex. 2009 Feb;19(2):315-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18515297</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cogn Neurosci. 2010 Mar;22(3):482-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19309293</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cogn Neurosci. 2010 May;22(5):970-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19413481</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2009 Jun 3;29(22):7315-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19494153</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurosci Biobehav Rev. 2009 Jul;33(7):1133-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19500617</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann N Y Acad Sci. 2009 Jul;1169:205-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19673782</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Behav Brain Res. 2010 Jan 5;206(1):63-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19729041</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Psychol Res. 2010 Jul;74(4):400-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19856185</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Brain Res. 2010 Jul;204(3):397-407</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19943038</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Brain Mapp. 2010 Aug;31(8):1196-206</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20024944</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2009 Dec 22;4(12):e8405</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20027229</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cogn Neurosci. 2011 Jan;23(1):214-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20044885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain Cogn. 2010 Aug;73(3):153-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20546987</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hippocampus. 2011 Aug;21(8):855-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20572197</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurosci Lett. 2010 Aug 30;481(1):36-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20600608</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Psychiatry Res. 2010 Aug 30;183(2):114-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20630712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cogn Affect Behav Neurosci. 2010 Sep;10(3):422-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20805543</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>F1000 Biol Rep. 2009 Oct 14;1:78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20948610</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroimage. 2011 May 1;56(1):373-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21276862</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurosci Lett. 2011 Apr 4;492(3):139-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21300138</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroimage. 2011 Jun 1;56(3):1822-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21362488</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Hum Neurosci. 2011 Mar 08;5:20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21441983</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Brain Res. 2011 Sep;213(2-3):257-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21643713</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cereb Cortex. 2012 Aug;22(8):1876-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21976356</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Hum Neurosci. 2011 Nov 01;5:124</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22053154</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Neurosci. 2012 May;35(10):1646-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22541026</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cereb Cortex. 2013 Jun;23(6):1342-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22617849</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain Res. 2012 Aug 30;1471:75-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22765911</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2012;2:883</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23181191</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Behav Brain Res. 2013 Mar 15;241:80-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23238041</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuropsychologia. 2013 Feb;51(3):538-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23238370</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroimage. 2014 Jan 1;84:854-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24064067</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cogn Neurosci. 2011 Sep-Dec;2(3-4):186-203</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24168534</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Hum Neurosci. 2014 Feb 04;8:35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24550812</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2014 Apr 2;34(14):4882-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24695707</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroscience. 2014 Jun 20;271:9-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24747215</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroimage. 2014 Sep;98:366-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24830835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cogn Affect Behav Neurosci. 2015 Mar;15(1):180-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24934133</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain Struct Funct. 2015 Nov;220(6):3611-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25139625</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Hum Neurosci. 2014 Aug 21;8:642</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25191255</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuropsychologia. 2014 Oct;63:135-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25192631</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mot Behav. 2015;47(4):302-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25494618</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Brain Res. 2015 Apr;233(4):1273-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25618007</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Cogn Sci. 2015 May;19(5):268-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25843544</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuropsychologia. 2016 Mar;83:138-148</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26044771</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuropsychologia. 2016 Mar;83:88-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26095002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cortex. 2015 Oct;71:277-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26280275</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2015 Sep 30;10(9):e0138238</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26422790</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2015 Dec 9;35(49):16034-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26658857</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroscientist. 2017 Feb;23(1):56-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26747293</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroimage. 2016 Jul 1;134:22-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27063060</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain Res. 2016 Jul 1;1642:353-363</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27067186</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroimage. 2016 Jul 15;135:273-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27114054</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neural Plast. 2016;2016:6817397</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27247805</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Neurosci. 2016 Sep;44(6):2340-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27421883</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Neurosci. 2016 Dec;17(12):757-765</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27761004</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroscience. 2017 Mar 27;346:309-319</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28153687</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuropsychologia. 2017 May;99:306-313</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28322907</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Psychophysiology. 2017 Dec;54(12):1855-1871</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28776708</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuropsychologia. 2017 Sep;104:168-181</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28827154</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Brain Res. 2018 Mar;236(3):907-918</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29362830</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1996 Jun 6;381(6582):520-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8632824</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Brain Mapp. 1998;6(4):216-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9704262</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Italie</li>
</country>
<region>
<li>Lombardie</li>
</region>
<settlement>
<li>Milan</li>
</settlement>
</list>
<tree>
<country name="Italie">
<region name="Lombardie">
<name sortKey="Orlandi, Andrea" sort="Orlandi, Andrea" uniqKey="Orlandi A" first="Andrea" last="Orlandi">Andrea Orlandi</name>
</region>
<name sortKey="Proverbio, Alice Mado" sort="Proverbio, Alice Mado" uniqKey="Proverbio A" first="Alice Mado" last="Proverbio">Alice Mado Proverbio</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SanteMusiqueV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000610 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000610 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SanteMusiqueV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:30700799
   |texte=   Bilateral engagement of the occipito-temporal cortex in response to dance kinematics in experts.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:30700799" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a SanteMusiqueV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Mon Mar 8 15:23:44 2021. Site generation: Mon Mar 8 15:23:58 2021